15.4 Lecture: Polar integrals and Polar area

Jeremiah Southwick (But really Robert Vandermolen)

Spring 2019

Links

Robert's slides can be found here:

http://people.math.sc.edu/robertv/teaching.html

The 15.4 slides can be found here:

https://docs.google.com/presentation/d/ 1-xUgXkCZhOCglmUvGODH8yx6bjv6z4nGlkZLxVPeqZ8

POLAR COORDINATES!

As with rectangular coordinates, we can bound by functions as well...

If f is continuous on a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, \ h_1(\theta) \leq r \leq h_2(\theta)\}$$

$$\iint\limits_{D} f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$

Double Integrals with Polar Coordinates!

EXAMPLE:

Find the volume of the solid that lies under the paraboloid,

$$z = x^2 + y^2$$

above xy-plane, and inside the cylinder,

$$x^2 + y^2 = 2x$$

Double Integrals with Polar Coordinates!

EXAMPLE:

Find the volume of the solid that lies under the paraboloid,

$$z = x^2 + y^2$$

above xy-plane, and inside the cylinder,

$$x^2 + y^2 = 2x$$

$$r^2 = 2r\cos(\theta) \Longrightarrow r = 2\cos(\theta)$$

Double Integrals with Polar Coordinates!

$$\int_R \int x^2 + y^2 \; dA =$$

EXAMPLE:

R:

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

 $0 \le r \le 2\cos(\theta)$

Recall:
$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

NOW YOU TRY!

Evaluate the double integrals by switching to polar coordinates:

Area

Theorem

The area of a region R given by polar coordinates is

$$A = \int \int_{R} r \ dr \ d\theta$$

Example

Find the area enclosed by the lemniscate $r^2 = 4\cos(2\theta)$.

Example

Find the area enclosed by the lemniscate $r^2=4\cos(2\theta)$. (Lemniscate = Bow tie)

Example

Find the area enclosed by the lemniscate $r^2 = 4\cos(2\theta)$.

(Lemniscate = Bow tie)

First we sketch the region.

Example

Find the area enclosed by the lemniscate $r^2 = 4\cos(2\theta)$.

(Lemniscate = Bow tie)

First we sketch the region.

$$A = \int_{\theta=0}^{\theta=\pi/4} \int_{r=0}^{r=\sqrt{4\cos(2\theta)}} r \ dr \ d\theta$$

Example

Find the area enclosed by the lemniscate $r^2 = 4\cos(2\theta)$.

(Lemniscate = Bow tie)

First we sketch the region.

$$A = \int_{\theta=0}^{\theta=\pi/4} \int_{r=0}^{r=\sqrt{4\cos(2\theta)}} r \ dr \ d\theta = 4 \int_{\theta=0}^{\theta=\pi/4} \left[\frac{r^2}{2} \right]_{r=0}^{r=\sqrt{4\cos(2\theta)}} d\theta$$

$$=4\int_{\theta=0}^{\theta=\pi/4} 2\cos(2\theta)d\theta = 4\sin(2\theta)\bigg]_{\theta=0}^{\theta=\pi/4} = 4.$$

